Limiting spectral distribution of sums of unitary and orthogonal matrices∗

نویسندگان

  • Anirban Basak
  • Amir Dembo
چکیده

We show that the empirical eigenvalue measure for sum of d independent Haar distributed n-dimensional unitary matrices, converge for n → ∞ to the Brown measure of the free sum of d Haar unitary operators. The same applies for independent Haar distributed n-dimensional orthogonal matrices. As a byproduct of our approach, we relax the requirement of uniformly bounded imaginary part of Stieltjes transform of Tn that is made in [7, Thm. 1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral gap of doubly stochastic matrices generated from equidistributed unitary matrices

To a unitary matrix U we associate a doubly stochastic matrix M by taking the squared modulus of each element of U . To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M , we study the limiting distribution of the spectral gap of M when U is taken from the circular unitary ensemble and the dimension N of U is taken to inf...

متن کامل

Spectral gap of doubly stochastic matrices generated from CUE

To a unitary matrix U we associate a doubly stochastic matrix M by taking the modulus squared of each element of U. To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M, we study the limiting distribution of the spectral gap of M when U is taken from the Circular Unitary Ensemble and the dimension N of U is taken to infin...

متن کامل

Janossy densities for Unitary ensembles at the spectral edge

For a broad class of unitary ensembles of random matrices we demonstrate the universal nature of the Janossy densities of eigenvalues near the spectral edge, providing a different formulation of the probability distributions of the limiting second, third, etc. largest eigenvalues of the ensembles in question. The approach is based on a representation of the Janossy densities in terms of a syste...

متن کامل

Limiting Spectral Distributions of Sums of Products of Non-hermitian Random Matrices

For fixed l,m ≥ 1, let X n ,X n , . . . ,X n be independent random n × n matrices with independent entries, let F n := X n (X n )−1 · · · (X n )−1, and let F (1) n , . . . ,F (m) n be independent random matrices of the same form as F (0) n . We investigate the limiting spectral distributions of the matrices F (0) n and F (1) n +. . .+F (m) n as n→∞. Our main result shows that the sum F n +. . ....

متن کامل

The Strong Asymptotic Freeness of Haar and Deterministic Matrices

In this paper, we are interested in sequences of q-tuple of N × N random matrices having a strong limiting distribution (i.e. given any non-commutative polynomial in the matrices and their conjugate transpose, its normalized trace and its norm converge). We start with such a sequence having this property, and we show that this property pertains if the q-tuple is enlarged with independent unitar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013